

Octal Double-Data-Rate PSRAM

Specifications

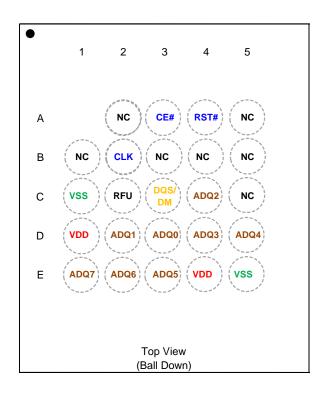
- Single Supply Voltage:
 - \odot $~V_{\text{DD}}$ =1.62 to 1.98V
 - V_{DDQ} =1.62 to 1.98V
- Interface: Octal SPI with DDR mode, two bytes transfers per one clock cycle
- Performance: Clock rate up to 200MHz, 400MBps read/write throughput
- Organization: 256Mb, 32M x 8bits with 2048 bytes per page
 - Column address: AY0 to AY10
 - Row address: AX0 to AX13
- Refresh: Self-managed
- Operating temperature range
 - Tc= -40°C to +85°C (standard range)
 - Tc = -40°C to +105°C (extended range)
- Typical mean Room Standby Current:
 - o 40µA @ 25°C (Halfsleep[™] Mode with data retained)
 - Maximum Standby Current:
 - 1100μA @ 105°C
 - ο 680μA @ 85°C

• Features

- Low Power Features:
 - Auto Temperature Compensated Self-Refresh (ATCSR) by built-in temperature sensor
 - O Ultra Low Power Halfsleep[™] mode with data retention.
- Software reset
- Reset pin available
- Output driver LVCMOS with programmable drive strength
- Data mask (DM) for write data
- Data strobe (DQS) enabled high speed read operation
- Register configurable write and read initial latencies
- Write burst length, maximum 2048 Byte, minimum 2 Byte.
- Wrap & hybrid burst in 16/32/64/128 lengths.
- Linear Burst Command (wraps at page boundary)

Table of Contents

1 Table of Contents


1	Table of Contents							
2	Pack	age Information	3					
	2.1	Package Types : BGA 24B x8 (BD)	3					
	2.2	Package Outline Drawing	4					
	2.2.1	BGA 24B x8 , package code BD	.4					
3	Orde	ering Information	5					
4	Sign	al Table	6					
5	Bloc	k diagram	7					
6	Pow	er-Up Initialization	8					
	6.1	Power-Up Initialization Method 2 (via. Global Reset)						
7		rface Description						
,								
	7.1	Address Space						
	7.2	Burst Type & Length						
	7.3	Command/Address Latching	9					
	7.4	Command Truth Table1	0					
	7.5	Read Operation1	1					
	7.6	Write Operation1	.3					
	7.7	Control registers1	4					
	7.8	Deep Power Down Mode1	9					
	7.9	Halfsleep [™] Mode2	1					
8	Elect	trical Specifications:	2					
	8.1	Absolute Maximum Ratings2	2					
	8.2	Pin Capacitance2	2					
	8.3	Decoupling Capacitor Requirement2	3					
	8.3.1	Low ESR cap C1:2	23					
	8.3.2	Large cap C2:2	23					
	8.4	Operating Conditions	3					
	8.5	DC Characteristics	4					
	8.6	AC Characteristics2	5					
9	Char	nge Log 2	7					

2 Package Information

2.1 Package Types : BGA 24B x8 (BD)

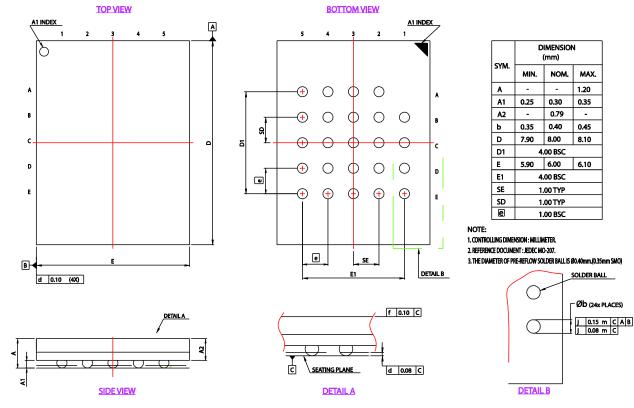
The APS25608N-OCHx is available in mini-BGA 24B package 6 x 8 x 1.2mm, ball pitch 1.0mm, ball size 0.4mm, package code "BD".

• Ball Assignment for MINI-BGA 24B

(6x8x1.2mm)(P1.0)(B0.4)

Note:

1. Part Number APS25608N-OCHx-BD for 256Mb


2. RFU stands for Reserved for Future Use, which shall be left floating

3. NC: No internal connection.

2.2 Package Outline Drawing

2.2.1 BGA 24B x8 , package code BD

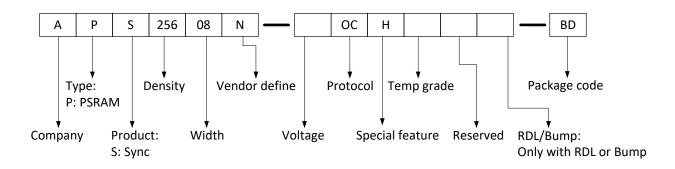

3 Ordering Information

Table 1: Ordering Information

Part Number	10	Temperature Range	Max Frequency	Note
APS25608N-OCH-BD	X8	Tc = -40°C to +85°C	200 MHz	BGA 24B
APS25608N-OCHX-BD	X8	Tc = -40°C to +105°C	200 MHz	BGA 24B

Note for "x"

 -OCH is standard part. PN example of 24B BGA is APS25608N-OCH-BD for normal temperature grade.

4 Signal Table

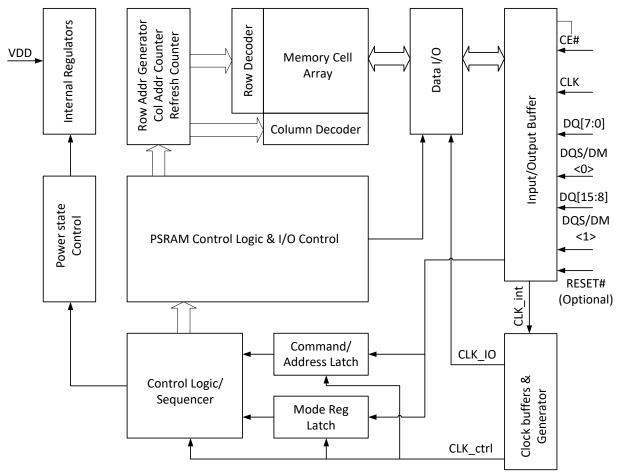

All signals are listed in Table 2.

Table 2: Signals Table

Symbol	Туре	Description	Comments
V _{DD}	Power	Core & IO supply 1.8V	V_{DDQ} short to V_{DD}
			internally.
V _{SS}	Ground	Core& IO supply ground	
A/DQ[7:0]	10	Address/DQ bus [7:0]	
DQS/DM<0>	10	DQ strobe clock for DQ[7:0] during all reads, Data mask for	
		DQ[7:0] during memory writes. DM is active high. DM=1	
		means "do not write".	
CE#	Input	Chip select, active low. When CE#=1, chip is in standby state.	
CLK	Input	Clock signal	
RESET#	Input	Reset signal, active low. Optional, as the pad is internally tied	May not be available
		to a weak pull-up and can be left floating.	for all package types

5 Block diagram

apmemory

6 Power-Up Initialization

Octal DDR products include an on-chip voltage sensor used to start the self-initialization process. V_{DD} and V_{DDQ} must be applied simultaneously. When they reach a stable level at or above minimum V_{DD} , the device is in Phase 1 and will require 150µs to complete its self-initialization process. The user can then proceed to Phase 2 of the initialization described in sections 1.1

During Phase 1 CE# should remain HIGH (track V_{DD} within 200mV); CLK should remain LOW.

After Phase 2 is complete the device is ready for operation, however Halfsleep[™] entry and Deep Power Down (DPD) entry are not available until Halfsleep[™] Power Up (tHSPU) or DPD Power Up (tDPDp) durations are observed.

6.1 Power-Up Initialization Method 2 (via. Global Reset)

As an alternate power-up initialization method, after the Phase 1 150µs period the Global Reset command can also be used to reset the device in Phase 2 as follows:

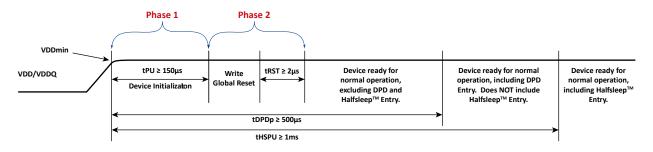


Figure 1. Power-Up Initialization Method 2 Timing with Global Reset

The Global Reset command resets all register contents. Memory content is not guaranteed. The command frame is 4 clocked CE lows. The Global Reset command sequence is shown below.

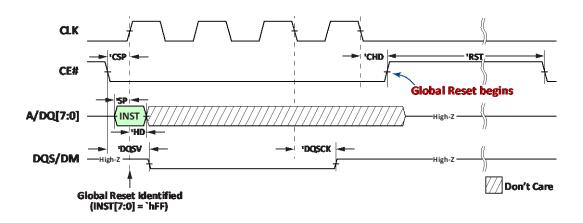


Figure 2: Global Reset

7 Interface Description

7.1 Address Space

Octal DDR PSRAM device is byte-addressable. Memory accesses are required to start on even addresses (A[0]='0).

7.2 Burst Type & Length

Read and write operations are always in wrap mode within 16, 32, 64, 128 or 2K (see Table 9). Bursts can start on any even address. Write Burst Length has a minimum of 2 bytes (1 rising CLK and 1 falling CLK edge). Read has no minimum length. Both write and read have no restriction on maximum Burst Length as long as tCEM is met.

7.3 Command/Address Latching

After CE# goes LOW, instruction code is latched on 1st CLK rising edge. Row Access (RA) address is latched on the 3rd & 4th edges (2nd CLK rising edge, 2nd CLK falling edge), while Column Access (CA) address is latched on the 5th & 6th CLK edges (3rd CLK rising edge, 3rd CLK falling edge).

	1st CLK		2nd CLK		3rd CLK	
Pin	L-	ſ	Ļ			_
A/DQ[7]	INST[7]	×	rsvd.	RA[6]	CA[9]	rsvd.
A/DQ[6]	INST[6]	×	RA[13]	RA[5]	CA[8]	rsvd.
A/DQ[5]	INST[5]	×	RA[12]	RA[4]	CA[7]	rsvd.
A/DQ[4]	INST[4]	×	RA[11]	RA[3]	CA[6]	rsvd.
A/DQ[3]	INST[3]	×	RA[10]	RA[2]	CA[5]	CA[3]
A/DQ[2]	INST[2]	×	RA[9]	RA[1]	CA[4]	CA[2]
A/DQ[1]	INST[1]	×	RA[8]	RA[0]	rsvd.	CA[1]
A/DQ[0]	INST[0]	×	RA[7]	CA[10]	rsvd.	CA[0]

Remarks: $\times = \text{don't care } (V_{IH}/V_{IL})$

During the Command/Address cycles (first three clocks) DQS/DM will be driven low by the PSRAM for all operations.

7.4 Command Truth Table

The Octal DDR PSRAM recognizes the following commands specified on the INST (Instruction) cycle defined by the Address/DQ pins.

	1st C	CLK 2nd C		CLK	3rd	CLK
Command						
Sync Read	80h	×	A3	A2	A1	A0
Sync Write	00h	×	A3	A2	A1	A0
Sync Read (Linear Burst)	A0h	×	A3	A2	A1	A0
Sync Write (Linear Burst)	20h	×	A3	A2	A1	A0
ID Register Read	C0h or E0h	×	00h	00h	00h	00h
Mode Register Read	C0h or E0h	×	00h	04h	00h	00h
Mode Register Write	40h or 60h	×	00h	04h	00h	00h
Halfsleep [™] Entry	40h or 60h	×	00h	04h	00h	06h
Global Reset	FFh			×		

Remarks:

 \times = don't care (V_{IH}/V_{IL})

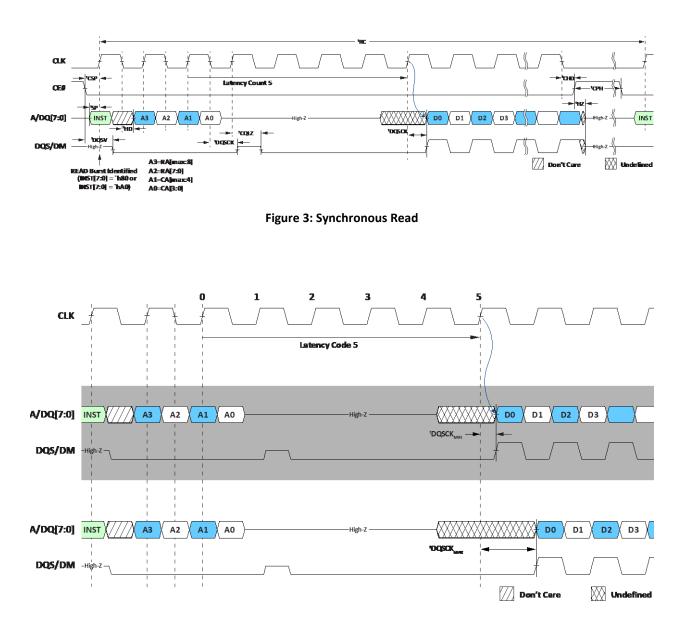
A3 = RA[max:7], unused address bit is reserved

 $A2 = {RA[6:0], CA[10]}$

A1 = {CA[9:4], 2xRsvd.}, unused address bits are reserved

A0 = {4xRsvd., CA[3:0]}

MA = Mode Register Address


Notes: 1) Default Burst Type set in Mode Register is 32 Byte Wrap

7.5 Read Operation

After address latching, the device initializes DQS/DM to '0 from CLK rising edge of the 3rd clock cycle (A1). See Figure 3 below.

Output data is available after LC cycles, as shown in Figure 4 & Figure 5, LC is latency configuration code as defined in Table 5 and Table 6. When data is valid, A/DQ[7:0] and DQS/DM follow the timing specified in Figure 6. Synchronous timing parameters are shown in Table 11 & Table 12.

In case of internal refresh insertion, variable latency output data is delayed by (LCx2) latency cycles as shown in Figure 4. The 1st DQS/DM rising edge after read pre-amble will indicate the beginning of valid data.

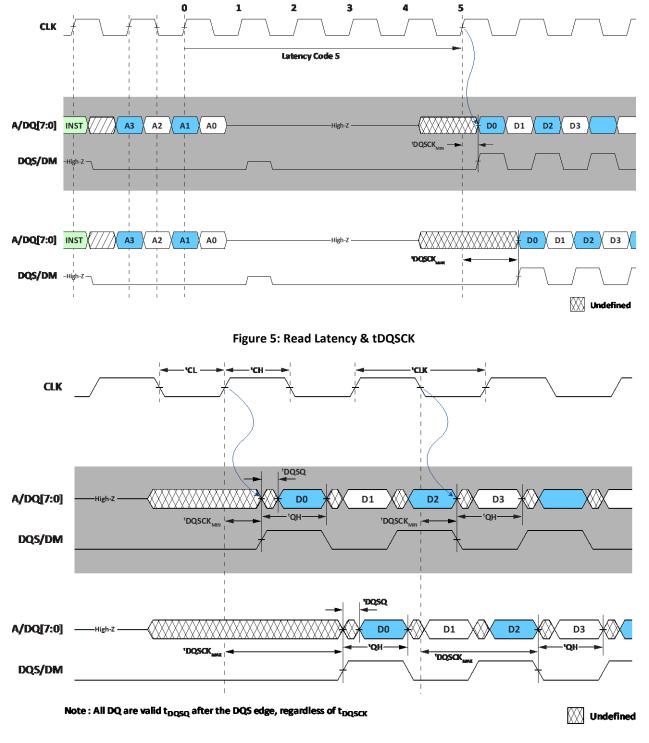


Figure 6: Read DQS/DM & DQ timing

apmemory

7.6 Write Operation

A minimum of 2 bytes of data must be input in a write operation. In the case of consecutive short burst writes, tRC must be met by issuing additional CE# high time between operations. Single-byte write operations can be performed by masking the un-written byte with DQS/DM as shown in Figure 7.

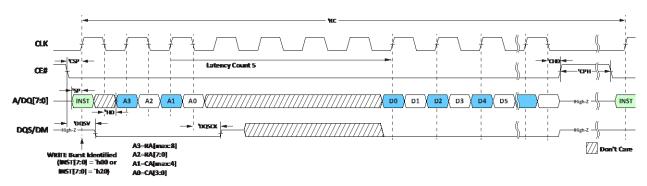


Figure 7: Synchronous Write Unmasked Example

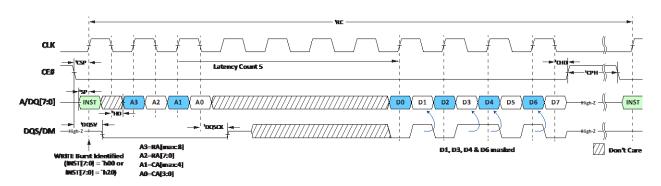
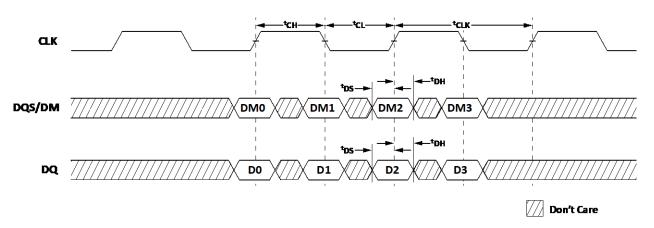
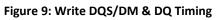




Figure 8: Synchronous Write Masking Example

7.7 Control registers

Register Read is shown below. Register reads are <u>always</u> LC latency cycles. Register Address in command determines which Register is read from.

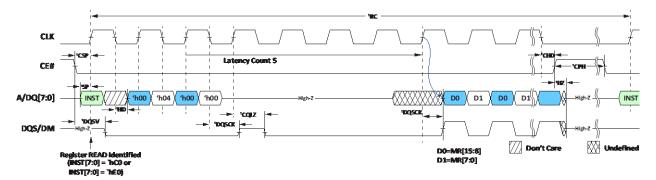
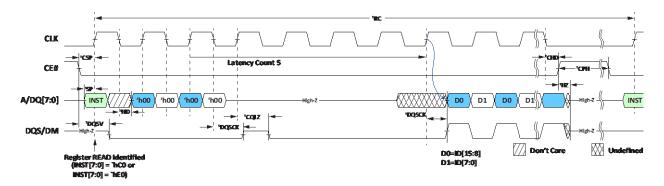



Figure 10: Mode Register Read

Register Write is shown below. Register Writes are <u>always</u> 0 latency cycle.

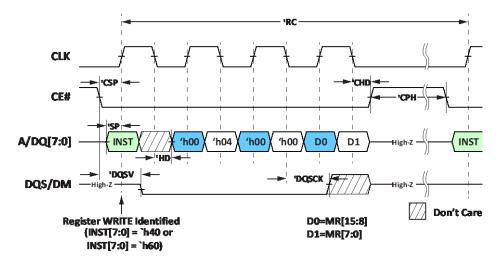


Figure 12: Register Write

ID & Mode Register mappings are shown in Table 3 & Table 4.

Table 3: ID Register Table

Bit	Purpose	Settings
15	KBD	0 - Good Die
15	KBD	1 - Known Bad Die
14-13	reserved	00
		01101 - 14 row address bits (128M), 13 logical row address
12-8	Row Address MSB	01110 - 15 row address bits (256M), 14 logical row address*
		01111 - 16 row address bits (512M), 15 logical row address
7-4	Col Address MSB	1001 - 10 column address bits, 11 logical column address*
3-0	Vendor	1101 - AP Memory

*Please refer section 7.3 Command/Address Latching, 15 row address bits of 256Mb includes 14 logical row address and 1 logical column address.

Table 4: Mode Register Table

Bit	Purpose	Settings
15	Deep Power Down Enable	0 - Deep Power Down Entry 1 - Normal Operation (default)
14-12	Drive Strength	see Table 7
11-10	Refresh Rate	see Table 8
9-8		reserved
7-4	Latency Code	see Table 5&6
3	Latency Type	0 - Variable Latency (default) 1 - Fixed Latency
2	Burst Type	0 - Wrapped (default) 1 - Hybrid Continuous
1-0	Burst Length	00 - 128 bytes 01 - 64 bytes 10 - 32 bytes (default) 11 - 16 bytes

Table 5: Latency Configuration Codes MR[7:4]

	VL Codes (MR[3]=0)	FL Codes (MR[3]=1)	Max Input CL	K Freq (MHz)
MR[7:4]	No Refresh (LC)	Refresh (LCx2)	(LCx2)	Standard	Extended
0000	3	6	6	66	66
0001	4	8	8	104	104
0010	5	10	10	133	133
0011	6	12	12	166	166
0100	7	14	14	200	200
0101	8 (default)	16	16	200	200
others	Reserved	-	-	-	-

Table 6: Operation Latency Code Table

Туре	Operation	VL (de	efault)	FL	
77-	-	No Refresh	Refresh		
Memory	Read	LC	LCx2	LCx2	
,	Write	LC		LC	
Register	Read	LC		LC	
	Write	()	0	

Table 7: Drive Strength Codes MR [14:12]

Codes	Drive Strength
' 000	100Ω
'001	66Ω
' 010	50Ω
'011	40Ω
'100	33Ω
'101	33Ω
'110	25Ω
'111	25Ω (default)

Table 8: Refresh Frequency setting MR[11:10]

MR[11:10]	Refresh Frequency
x0	Always 4x Refresh (default)
01	Enables 1x Refresh when temperature allows
11	Enable 0.5x Refresh when temperature allows

Note: x= don't care

Table 9: Burst Type MR[2], Burst Length MR[1:0], & Linear Burst

By default the device powers up in 32 Byte Wrap. In non-Hybrid burst (MR[2]=0), MR[1:0] sets the burst address space in which the device will continually wrap within. If Hybrid Burst Wrap is selected (MR[2]=1), the device will burst through the initial wrapped Burst Length once, then continue to burst incrementally up to maximum column address (2K) before wrapping around within the entire column address space. Burst Length (MR[1:0]) can be set to 16,32,64 & 128 bytes.

MR[2]	MR [1:0]	Burst Length	Example	of Sequence of Bytes During Wrap
		,	Starting Address	Byte Sequence
'0	'00	128 Byte Wrap	4	[4,5,6,127,0,1,2,]
'0	'01	64 Byte Wrap	4	[4,5,6,63,0,1,2,]
'0	'10	32 Byte Wrap (default)	4	[4,5,6,31,0,1,2,]
'0	'11	16 Byte Wrap	4	[4,5,6,15,0,1,2,]
'1	'00	128 Byte Hybrid Wrap	2	[2,3,4,127,0,1],128,1292047,0,1,
'1	'01	64 Byte Hybrid Wrap	2	[2,3,4,63,0,1],64,65,66,2047,0,1,
'1	'10	32 Byte Hybrid Wrap	2	[2,3,4,31,0,1],32,33,34,2047,0,1,
'1	'11	16 Byte Hybrid Wrap	2	[2,3,4,15,0,1],16,17,18,2047,0,1,

The Linear Burst Command (INST[5:0]=6'b10_0000) forces the current array read or write to do 2K Byte Wrap. The burst continues linearly from the starting address and at the end of the page it wraps back to the beginning of the page. This special burst instruction can be used on both array writes and reads. A new command is needed to access a different page.

apmemory

7.8 Deep Power Down Mode

Deep Power Down Mode (DPD) is a feature which puts the device in an ultra-low power state. DPD Mode Entry is entered by using Register Write to write a 0 into MR[15]. CE# going high initiates the DPD Mode and must be maintained for the minimum duration of tDPD. The Deep Power Down Entry command sequence is shown below.

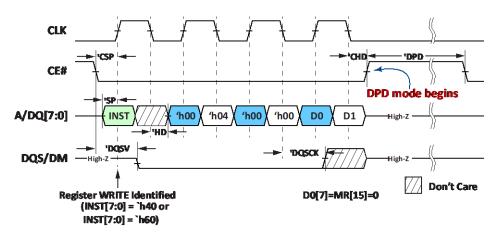


Figure 13: Deep Power Down Entry Write

Deep Power Down Exit is initiated by a low pulsed CE# or RESET#. After a CE# DPD exit, CE# must be held high until the first operation begins (observing minimum tXDPD).

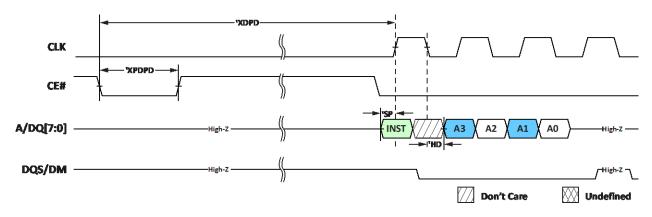
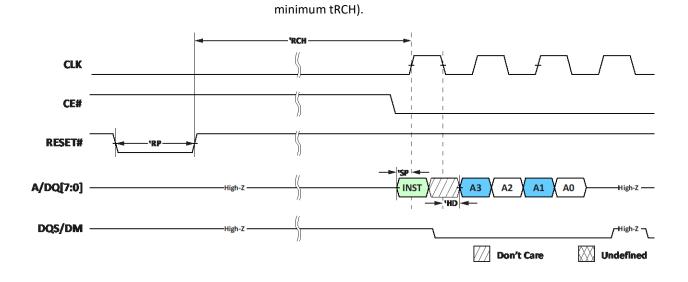
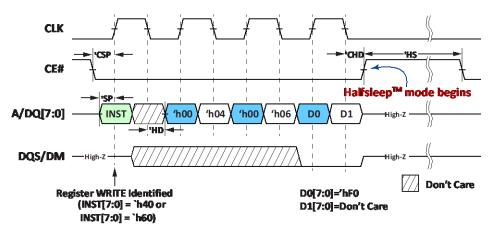


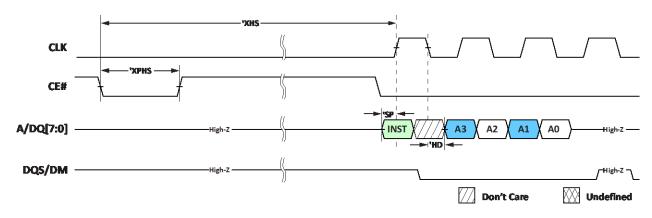
Figure 14: Deep Power Down Exit with CE# (Read Operation shown as example)

٩ apmemory After a RESET# DPD exit, CE# and RESET# must be held high until the first operation begins (observing




Figure 15: Deep Power Down Exit with RESET# (Read Operation shown as example)

Register values are retained in DPD Mode but memory content is not. However, if a RESET# low is used to exit DPD, register values are also reset to defaults. tDPDp is minimum period between two DPD Modes (measured from DPD exit to the next DPD entry) as well as from the initial powerup to the first DPD entry.


7.9 Halfsleep[™] Mode

Halfsleep[™] Mode is a feature which puts the device in an ultra-low power state, while the stored data is retained. Halfsleep[™] Mode Entry is entered by writing 8'hF0 into MR6. CE# going high initiates the Halfsleep[™] mode and must be maintained for the minimum duration of tHS. The Halfsleep[™] Entry command sequence is shown below.

Halfsleep[™] Exit is initiated by a low pulsed CE#. Afterwards, CE# should be held high until the first operation begins (observing minimum tXHS).

8 Electrical Specifications:

8.1 Absolute Maximum Ratings

Table 10: Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except V_{DD} , V_{DDQ} relative to V_{SS}	VT	-0.4 to V _{DD} /V _{DDQ} +0.4	V	
Voltage on V_{DD} supply relative to V_{SS}	V _{DD}	-0.4 to +2.45	V	
Voltage on V _{DDQ} supply relative to V _{SS}	V _{DDQ}	-0.4 to +2.45	V	
Storage Temperature	T _{STG}	-55 to +150	°C	1

Notes 1: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.

Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

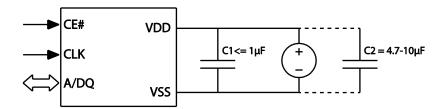
8.2 Pin Capacitance

Table 11: Package Pin Capacitance

Parameter	Symbol	Min	Мах	Unit	Notes
Input Pin Capacitance	CIN		5	pF	VIN=0V
Output Pin Capacitance	COUT		6	pF	VOUT=0V

Note: spec'd at 25°C.

Table 12: Load Capacitance


Parameter	Symbol	Min	Мах	Unit	Notes
Load Capacitance	CL		15	pF	

Note: System C_{L} for the use of package.

apmemory

8.3 Decoupling Capacitor Requirement

System designers need to take care of power integrity considering voltage regulator response and the memory peak currents/usage modes.

Figure 18. Decoupling Capacitor

8.3.1 Low ESR cap C1:

It is recommended to place a low ESR decoupling capacitor of $<=1\mu$ F close to the device to absorb transient peaks.

8.3.2 Large cap C2:

During Half-sleep modes even though half-sleep average currents are very small (less than 100 μ A), device will internally have low duty cycle burst refresh for an extended period of time of a few tens of microseconds. These refresh current peaks are large. During this period if the system regulator cannot supply large peaks for several microseconds, it is important to place a 4.7 μ F-10 μ F cap to take care of burst refresh currents and replenish the charge before next burst of refreshes.

If required please contact AP Memory for further current peak details.

8.4 Operating Conditions

Table 13: Operating Characteristics

Parameter	Min	Мах	Unit	Notes
Operating Temperature (extended)	-40	105	°C	
Operating Temperature (standard)	-40	85	°C	

8.5 DC Characteristics

Table 14: DC Characteristics

Symbol	Parameter	Min	Мах	Unit	Notes
V _{DD}	Supply Voltage	1.62	1.98	V	
VDDQ	I/O Supply Voltage	1.62	1.98	V	
V _{IH}	Input high voltage	V _{DDQ} -	V _{DDQ} +0.2	V	
VIL	Input low voltage	-0.2	0.4	V	
V _{OH}	Output high voltage (I _{OH} =-0.2mA)	0.8		V	
Vol	Output low voltage (I _{OL} =+0.2mA)		0.2 VDDQ	V	
Iu	Input leakage current		1	μA	
ILO	Output leakage current		1	μΑ	
	Read/Write @13MHz		4	mA	1
lcc	Read/Write @133MHz		15	mA	1
	Read/Write @166MHz		20	mA	1
	Read/Write @200MHz		25	mA	1
ISB _{EXT}	Standby current (105C)		1100	μA	2
ISB _{STD}	Standby current (85C)		680	μA	2
ISB	Standby current (Deep Power Down -40°C to 85°C)		20	μΑ	7

Note 1: Current is only characterized.

Note 2: Without CLK toggling. ISB will be higher if CLK is toggling.

Note 3: 0.5x Refresh.

- Note 4: Typical mean ISBstDroom 100uA.
- Note 5: Current is only guaranteed after 150ms into Halfsleep[™] mode.
- Note 6: Typical mean ISBstDhs 40uA
- Note 7: **Typical mean ISB**STDDPD **8uA at 25°C**

8.6 AC Characteristics

Table 11: READ/WRITE Timing

		-7(13	3MHz)	-6(16	6MHz)	-5(20	OMHz)		
Symbol	Parameter	Min	Мах	Min	Max	Min	Мах	Unit	Notes
tCLK	CLK period	7.5		6		5		ns	
tCH/tCL	Clock high/low width	0.45	0.55	0.45	0.55	0.45	0.55	tCLK	
tKHKL	CLK rise or fall time		1.2		1		0.8	ns	
tCEM	CE# low pulse width		4		4		4	μs	Standard
	•		1		1		1	μs	Extended
tCEM	CE# low pulse width	3		3		3		tCLK	Minimum 3
tCPH	CE# high pulse width	15		18		20		ns	Clocking
tCSP	CE# setup time to CLK rising edge	2		2		2		ns	
tCHD	CE# hold time from CLK falling	2		2		2		ns	
tSP	Setup time to active CLK edge	0.8		0.6		0.5		ns	
tHD	Hold time from active CLK edge	0.8		0.6		0.5		ns	
tDQSV	Chip enable to DQS output low	2	6	2	6	2	6	ns	
tHZ	Chip disable to DQ/DQS output		6		6		6	ns	
tRC	Write Cycle	60		60		60		ns	
tRC	Read Cycle	60		60		60		ns	
tHS	Minimum Halfsleep [™] duration	150		150		150		μs	
tXHS	Halfsleep [™] Exit CE# low to CLK	150		150		150		μs	
	setup time								
tXPHS	Halfsleep [™] Exit CE# low pulse	60		60		60		ns	
LAFIIJ	width		tCEM		tCEM		tCEM	μs	Standard
								μs	Extended
tDPD	Minimum DPD Duration	500		500		500		μs	
tDPDp	Minimum period between DPD	500		500		500		μs	
tXDPD	DPD CE# low to CLK setup time	150		150		150		μs	
tXPDPD	DPD Exit CE# low pulse width	60		60		60		ns	_
		450	2	450	2	450	2	μs	
tPU	Device Initialization	150		150		150		μs	
tCHR	Chip-disable to RESET# low	20		20		20		ns	
tRP	RESET# low pulse width	1		1		1		μs	
tRST	Reset to CMD valid	2		2		2		μs	
tRCH	RESET# to CMD valid	150		150		150		μs	

Table 12: DDR timing parameters

		-7(133MHz)		-6(166MHz)		-5(200MHz)			
Symbol	Parameter	Min	Мах	Min	Max	Min	Мах	Unit	Notes
tCQLZ	Clock rising edge to DQS low	1	6	1	6	1	6	ns	
tDQSCK	DQS output access time from CLK	2	5.5	2	5.5	2	5.5	ns	
tDQSQ	DQS – DQ skew		0.6		0.5		0.4	ns	
tDS	DQ and DM input setup time	0.8		0.6		0.5		ns	
tDH	DQ and DM input hold time	0.8		0.6		0.5		ns	

9 Change Log

Version	Who	Date	Description				
0.01		Apr. 03, 2019	Initial version derived from E3 1.61				
0.02		Jul. 08, 2019	Update Table 3 ,7, 9, DC characteristics. Add Halfsleep [™] mode.				
0.03		Jul. 15, 2019	Update Figure 3, 16, 17, and 19				
0.04		Jul. 16, 2019	Update part number, command truth table, Figure 1, Table 12, 16, ball assignment				
0.05		Jul. 17, 2019	Update VDDQ information				
0.06		Jul. 17, 2019	Update bare die pin capacitance				
0.07		Aug 23, 2019	Updated tHS, tXPDPD, Wrap & hybrid burst, package code				
0.08		Oct 18, 2021	tCEM revised data by BD suggest (E7_OPI_256Mb/512Mb) Standard temp: 2 us -> 4 us. Extended temp: 0.5 us -> 1 us.				
1.0	Kim	Sep 02, 2022	Revised typos				